Activity-dependent neuroprotective protein (ADNP): from autism to Alzheimer’s disease

نویسنده

  • Illana Gozes
چکیده

MicroRNAs (miRNAs) are short, 22–25 nucleotide long transcripts that may suppress entire signaling pathways by interacting with the 3’-untranslated region (3’-UTR) of coding mRNA targets, interrupting translation and inducing degradation of these targets. The long 3’-UTRs of brain transcripts compared to other tissues predict important roles for brain miRNAs. Supporting this notion, we found that brain miRNAs co-evolved with their target transcripts, that non-coding pseudogenes with miRNA recognition elements compete with brain coding mRNAs on their miRNA interactions, and that Single Nucleotide Polymorphisms (SNPs) on such pseudogenes are enriched in mental diseases including autism and schizophrenia, but not Alzheimer’s disease (AD). Focusing on evolutionarily conserved and primate-specifi c miRNA controllers of cholinergic signaling (‘CholinomiRs’), we fi nd modifi ed CholinomiR levels in the brain and/or nucleated blood cells of patients with AD and Parkinson’s disease, with treatment-related diff erences in their levels and prominent impact on the cognitive and anti-infl ammatory consequences of cholinergic signals. Examples include the acetylcholinesterase (AChE)-targeted evolutionarily conserved miR-132, whose levels decline drastically in the AD brain. Furthermore, we found that interruption of AChE mRNA’s interaction with the primatespecifi c CholinomiR-608 in carriers of a SNP in the AChE’s miR-608 binding site induces domino-like eff ects that reduce the levels of many other miR-608 targets. Young, healthy carriers of this SNP express 40% higher brain AChE activity than others, potentially aff ecting the responsiveness to AD’s anti-AChE therapeutics, and show elevated trait anxiety, infl ammation and hypertension. Non-coding regions aff ecting miRNA-target interactions in neurodegenerative brains thus merit special attention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model.

Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate essential genes. Because complete ADNP deficiency is embryonic lethal, the outcome of partial ADNP deficiency was examined. ADNP(+/-) mice exhibited cognitive deficits, significant increases in phosphorylated tau, tangle-like structures, and neurodegeneration compared with ADNP(+/+) mice. Incre...

متن کامل

ADNP: in search for molecular mechanisms and innovative therapeutic strategies for frontotemporal degeneration

Activity-dependent neuroprotective protein (ADNP) is deregulated in Alzheimer's disease (AD) and in schizophrenia and mutated in autism. In mice, ADNP is essential for brain formation and ADNP haploinsufficiency is associated with cognitive and social deficits and tauopathy. Tauopathy, a major pathology in AD, is also found in ~45% of frontotemporal dementias (FTDs). Tau transcript, a product o...

متن کامل

Novel Marker for the Onset of Frontotemporal Dementia: Early Increase in Activity-Dependent Neuroprotective Protein (ADNP) in the Face of Tau Mutation

Tauopathy, a major pathology in Alzheimer's disease, is also found in ~50% of frontotemporal dementias (FTDs). Tau transcript, a product of a single gene, undergoes alternative splicing to yield 6 protein species, each with either 3 or 4 microtubule binding repeat domains (tau 3R or 4R, associated with dynamic and stable microtubules, respectively). While the healthy human brain shows a 1/1 rat...

متن کامل

NAP, a peptide derived from the activity-dependent neuroprotective protein, modulates macrophage function.

NAP is an eight-amino acid neuroprotective peptide NAPVSIPQ; it is the smallest active element derived from the recently cloned activity-dependent neuroprotective protein (ADNP). NAP readily enters the brain from the blood. It will be important to learn whether NAP, in addition to its neuroprotective activity, also might influence immune-mediated inflammation. Here, we report that: (a) macropha...

متن کامل

HP1 Recruits Activity-Dependent Neuroprotective Protein to H3K9me3 Marked Pericentromeric Heterochromatin for Silencing of Major Satellite Repeats

H3 lysine 9 trimethylation (H3K9me3) is a histone posttranslational modification (PTM) that has emerged as hallmark of pericentromeric heterochromatin. This constitutive chromatin domain is composed of repetitive DNA elements, whose transcription is differentially regulated. Mammalian cells contain three HP1 proteins, HP1α, HP1β and HP1γ These have been shown to bind to H3K9me3 and are thought ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015